Łukasiewicz–Moisil algebra - definitie. Wat is Łukasiewicz–Moisil algebra
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Łukasiewicz–Moisil algebra - definitie


Łukasiewicz–Moisil algebra         
Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebrasAndrei Popescu, Łukasiewicz-Moisil Relation Algebras, Studia Logica, Vol. 81, No.
Łukasiewicz logic         
MANY-VALUED LOGIC
Lukasiewicz fuzzy logic; Lukasiewicz logic; Łukasiewicz fuzzy logic; Łukasiewicz-Tarski logic; Łukasiewicz implication; Łukasiewicz–Tarski logic; Draft:Łukasiewicz logic
In mathematics and philosophy, Łukasiewicz logic ( , ) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic;Łukasiewicz J.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.